Skip to main content

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace

Artificial intelligence (AI) is rapidly evolving, and language models (LMs) are becoming increasingly capable of helping us solve complex AI tasks. As the complexity of AI tasks increases, so does the need for LMs to interface with numerous AI models. This is where HuggingGPT comes in. In this article, we'll take a closer look at HuggingGPT and how it can help you solve complex AI tasks.

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace
 HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace

HuggingGPT is a collaborative system that consists of an LLM as the controller and numerous expert models as collaborative executors. The workflow of the HuggingGPT system consists of four stages: Task Planning, Model Selection, Task Execution, and Response Generation. Let's take a closer look at each of these stages.

Task Planning

The first stage of the HuggingGPT system is Task Planning. Using ChatGPT, HuggingGPT analyzes the requests of users to understand their intention, and disassemble them into possible solvable tasks. This allows the system to better understand what the user is looking for and to plan accordingly.

Model Selection

Once the task has been planned, HuggingGPT moves on to the Model Selection stage. To solve the planned tasks, ChatGPT selects expert models hosted on Hugging Face based on their descriptions. This ensures that the system is using the best models available for the task at hand.

Task Execution

With the models selected, HuggingGPT moves on to the Task Execution stage. In this stage, the system invokes and executes each selected model, and returns the results to ChatGPT. This ensures that the system is using the best models available for the task at hand.

Response Generation

Finally, using ChatGPT to integrate the prediction of all models, HuggingGPT moves on to the Response Generation stage. In this stage, the system generates responses that take into account the predictions made by each model. This ensures that the system is providing the user with the best possible response to their request.

HuggingGPT inputs
HuggingGPT inputs

HuggingGPT Response
HuggingGPT Response

System Requirements

To use HuggingGPT, you'll need to make sure your system meets the minimum requirements. The default requirements for HuggingGPT are:

Ubuntu 16.04 LTS

VRAM >= 12GB

RAM > 12GB (minimal), 16GB (standard), 42GB (full)

Disk > 78G (with 42G for damo-vilab/text-to-video-ms-1.7b)

If you don't meet these requirements, don't worry. The configuration lite.yaml does not require any expert models to be downloaded and deployed locally. However, it means that Jarvis is restricted to models running stably on HuggingFace Inference Endpoints.

Quick Start

To get started with HuggingGPT, you'll need to replace openai.key and huggingface.token in server/config.yaml with your personal OpenAI Key and your Hugging Face Token.

To read more, check their official page.

Popular posts from this blog

A Simple Address Book Program in Python with GUI

A Simple Address Book Program in Python with GUI An address book is a collection of contact information for individuals and organizations. This information can include names, addresses, phone numbers, email addresses, and other details. A program that allows you to manage your address book is a great tool for keeping track of your contacts. In this article, we'll show you how to create a simple address book program in Python and display the GUI using the required libraries. In this article, we will be covering how to create a simple address book program in Python with a GUI. The GUI (graphical user interface) is built using the tkinter library in Python, which is the standard GUI library for Python. The address book program allows you to add contacts, view contacts, and store their information such as name, phone number, email, and address. The program uses tkinter widgets such as Entry, Text, Button, Label, and Listbox to build the interface. Before diving into the code, let's...

How to Create a Simple Image Viewer with Python?

How to Create a Simple Image Viewer with Python? In this article, we will go through the steps of creating a simple image viewer app using Python's GUI library Tkinter. This app allows the user to navigate through a folder of images, viewing each one in turn. Introduction Have you ever wanted to view a folder of images in an organized manner? Well, look no further! With a little bit of Python code, you can create a simple image viewer that does exactly that. We'll be using Tkinter, a popular Python GUI library, to make this app. Building the App The first step in building the image viewer app is to import the required libraries and create a GUI window using Tkinter. You'll then need to specify the dimensions of the window, as well as its title, font, and other visual elements. Once the window is set up, you can start adding widgets to it. In this case, we'll be using label widgets to display the images. To navigate through the images, we'll add buttons for "Nex...

Building an Art Gallery Program in Python

Building an Art Gallery Program in Python As an art lover, you may have considered creating a program to manage your favorite art pieces and display them in a virtual art gallery. This program can help you keep track of the details of each piece, including the image, description, and price. In this article, we will go through the process of building an art gallery program using Python and several libraries, including Tkinter, Pillow, and Pandas. Importing Necessary Libraries Before we start building our program, we need to import the libraries that we will be using. Tkinter will be used for creating the GUI, Pillow for handling image processing, and Pandas for data management. Creating the Art Gallery Class Next, we create a class for the art gallery program and initialize the necessary variables, such as the list of art pieces, their images, descriptions, and prices. We will also define the main window and its features, such as buttons for adding, editing, and removing art pieces, and...

Build an AI-Powered Task Management System with OpenAI and Pinecone APIs

AI-Powered Task Management System with Python and OpenAI: A Pared-Down Version of Task-Driven Autonomous Agent If you're looking for a Python script that demonstrates an AI-powered task management system, look no further than BabyAGI. This script utilizes the APIs of OpenAI and Pinecone to prioritize, create, and execute tasks based on a predefined objective and the result of previous tasks. Build an AI-Powered Task Management System with OpenAI and Pinecone APIs The main idea behind BabyAGI is that it takes the result of previous tasks and creates new ones based on the objective using OpenAI's natural language processing (NLP) capabilities. Pinecone is then used to store and retrieve task results for context. Although it's a pared-down version of the original Task-Driven Autonomous Agent, it still packs a punch in terms of its functionality.  How It Works The script works by running an infinite loop that goes through the following steps: Pull the first task from the task l...

Now on Google News!

We have some exciting news to share with you!  Our website is now listed on Google News, which means that our content will reach a wider audience and more potential customers.  Google News Logo Google News is a platform that aggregates news from various sources and displays them according to the user's preferences and interests. Being listed on Google News is a great achievement for us, as it shows that our website meets the high standards of quality and relevance that Google requires. We are proud of our work and we hope that you will enjoy reading our articles and finding out more about our products and services.  Siri Sarah LLC on Google News If you haven't already, you can subscribe to our website on Google News by following these simple steps: - Open the Google News app on your device or go to news.google.com on your browser. - Search for our website name in the search bar. - Tap or click on the "Follow" button next to our website logo. That's it! You will no...